The signed-graphic representations of wheels and whirls
نویسندگان
چکیده
We characterize all of the ways to represent the wheel matroids and whirl matroids using frame matroids of signed graphs. The characterization of wheels is in terms of topological duality in the projective plane and the characterization of whirls is in terms of topological duality in the annulus.
منابع مشابه
A Wheels-and-Whirls Theorem for 3-Connected 2-Polymatroids
Tutte’s Wheels-and-Whirls Theorem is a basic inductive tool for dealing with 3-connected matroids. This paper proves a generalization of that theorem for the class of 2-polymatroids. Such structures include matroids, and they model both sets of points and lines in a projective space and sets of edges in a graph. The main result proves that, in a 3-connected 2-polymatroid that is not a whirl or ...
متن کاملMatroids and Graphs with Few Non-Essential Elements
An essential element of a 3–connected matroid M is one for which neither the deletion nor the contraction is 3–connected. Tutte’s Wheels and Whirls Theorem proves that the only 3–connected matroids in which every element is essential are the wheels and whirls. In an earlier paper, the authors showed that a 3–connected matroid with at least one non-essential element has at least two such element...
متن کاملSIGNED ROMAN DOMINATION NUMBER AND JOIN OF GRAPHS
In this paper we study the signed Roman dominationnumber of the join of graphs. Specially, we determine it for thejoin of cycles, wheels, fans and friendship graphs.
متن کاملOn the Structure of 3-connected Matroids and Graphs
An element e of a 3-connected matroid M is essential if neither the deletion M\e nor the contraction M/e is 3-connected. Tutte’s Wheels and Whirls Theorem proves that the only 3-connected matroids in which every element is essential are the wheels and whirls. In this paper, we consider those 3-connected matroids that have some non-essential elements, showing that every such matroid M must have ...
متن کاملAn upgraded Wheels-and-Whirls Theorem for 3-connected matroids
Let M be a 3-connected matroid that is not a wheel or a whirl. In this paper, we prove that M has an element e such that M\e or M/e is 3-connected and has no 3-separation that is not equivalent to one induced by M .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 308 شماره
صفحات -
تاریخ انتشار 2008